NT71I-2632]
NasACR-117026

INSTITUTE
FLUID DYNAMICS
APPLIED MATHEMATICS

Technical Note BN 679 March 1971

A mathematical model for investigating the
stability of thermally stratified flow of unbounded

viscous incompressible fluid

UNIVERSITY OF MARYLAND
College Park



A mathematical model for investigating the
stability of thermally stratified flow of unbounded

viscous incompressible fluid

by

K. 5. Gage

Institute for Fluid Dynamics and Applied Mathematics

The Graduate Meteorology Program

University of Maryland
College Park, Maryland

The work reported here was supported principally by the United States
Atomic Energy Commission under Contract AT (30-1)-4199. 1Initial com-
putations were made possible by the financial support of the National
Aeronautics and Space Administration Grant (Ns6—3%8). to the University

V : <
of Maryland Computer Science Center, /2}(;— ’L‘:L/" 002 ) D) g



Summary

The method used by Drazin to investigate the stability of unbounded,
viscous, homogeneous, parallel shear flow to small wavenumber disturbances is
extended to study the effect of thermal stratification on the stability of
un bounded jets and shear layers. By this method the stability characteristics
of continuous profiles are inferred from the stability characteristics of dis-
continuous profiles,

The differential equation which governs the stability of thermally
stratified parallel shear flow of a viscous, heat-conducting, incompressible
fluid is derived consistent with the Boussinesq approximation and the assump-
tion of negligible viscous heating. It is shown that the solution of the
governing differential equation in a layer of constant horizontal velocity
and constant vertical temperature gradient can be expressed as a linear com-
bination of exponential solutions. The matching conditions to be imposed upon
the solutions in adjacent layers are derived.

The characteristic value problem for discontinuous jet and shear
layers is posed by the requirement that the solutions of the governing
differential equation satisfy the matching conditions and boundedness condi-
tions for layers that extend to infinity. The analysis leads to a character-
istic determinant which is required to vanish for the characteristic values
of the parameters: the Reynolds number, the wavenumber and the wave speed.

In order to find these characteristic values, an eigenvalue search routine

is employed and curves of neutral stability for the shear layer and jet are
found for several values of the Richardson number. The Prandtl number depend-
ence is explored; but not completely., In particular, a Prandtl number de-

pendence was found for the eigenvalues of the shear layer even in the absence

of thermal stratification,



The stabilizing effect of the thermal stratification as parameter—
ized by the Richardson number was found to be most stabilizing for small
wavenumber (large-scale) disturbances. Moreover, since the model employing
discontinuous profiles can bnly be used to infer the small wavenumber stability
characteristics of continuous flows, no conclusions are drawn concerning a
critical Richardson number which stabilizes the continuous flows. Nevertheless
it is argued that the present approach represents a practicai method of ex-
ploring the stability of thermally stratified shear flow of small-scale in the
atmosphere as it occurs near regions of discontinuity in the vertical tempera-

ture gradient,



1. Introduction

A large part of hydrodynamic stability theory 1s devoted to the
study of homogeneous parallel shear flow. For inviscid incompressible fluid
the stability of such flows to small disturbances is governed by Rayleigh's

equation,
W) - & 0 - a®) ¢(z) - @) ¢ =0, (1.1)

where U(z) 1is the basic flow velocity, o 1is the disturbance wavenumber,
¢ is the disturbance wave speed and ¢(z) is the 2z dependent part of the
disturbance stream function. The  x—-coordinate is taken as the direction
of flow., The vertical coordinate, z , is directed across the flow and D
represents 4. . For viscous, incompressible fluid the stability of small

dz

disturbances is governed by the more general Orr-Sommerfeld equation,
2 2,2 . 2 2 2
(D - a™)° ¢(z) = 1oR{(U ~ ¢) (D" - a%) ¢(z) - (DU) ¢(=z)} , (1.2)

where R 1is the Reynolds number.

The stability analysis of the Orr-Sommerfeld equation involves the
formulation of a characteristic value problem in which the solutions of the
equation are required to satisfy certain boundary conditions. Eigenvalues
and eigensolutions obtained from the solution of the characteristic value
problem depend upon the basic velocity profile and the boundary conditions.

The major difficulty in obtaining the solution of the characteris-
tic value problem for the stability analysis of homogeneous parallel shear
flow is obtaining solutions to the Orr-Sommerfeld equation. At least three

different approaches have been used. Each method has its limitations,



The classical method involves the asymptotic solution (for a review,
see Reidl) of the Orr-Sommerfeld equation., It gives good results for large oR
and is, therefore, well suited for stability computations of boundary-layer or
channel flow., For such flows oR is usually larger than 100,

The second method is the numerical integration (for a review, see
Betchov and Criminalez) of the Orr-Sommerfeld equation. It gives reasonable
results for a wide range of aR but may lead to poor results if the Reynolds
number is too large. There is, of course, a range of oR for which the results
using the numerical analysis may be compared with the results using the
asymptotic analysis., The agreement is good (see, for example, Lin3 (p. 29)).
The numerical integration of the Orr-Sommerfeld equation may require a fair
amount of computer time, Especially, if many parameters are to be varied,
such computations can become costly and it would be well to have another method
which would require less computer time but still give good results for OR of
order unity.

Drazin4'has shown that it is possible to obtain the small wavenumber
stability charécteristics of unbounded flows, for which oR is known to be
of order one, by considering the stability characteristics of discontinuous
basic flows. 1In a layer of constant basic velocity the Orr-Sommerfeld equation
has simple exponential solutions. Specifically Drazin demonstrated that the

characteristic value problem for the discontinuous shear layer

U(z) = (1.3)

]

leads to a curve of neutral stability, R = 4 /3 a ,to which the curves of
neutral stability for continuous shear layer profiles are known to be asymptotic

for small o (see, for example, Tatsumi and Gotoh5 and Esch6).
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Drazin also explored the stability characteristics of the discon-

tinuous jet

1 !zl <1
U(z) = (1.4

0 |z| >1 .

Figure 1 is the curve of neutral stability in the 0,R plane and figure 2
is the corresponding curve in the u,é plane obtained from evaluating Drazin's
equation (52). TFor comparison purposes several eigenvalues are given for the
continuous Bickley jet (U(z) = sech2 z) after Clenshaw and Elliot7 and
Ta£sumi and Gotch, The agreement between Drazin's neutral curve for the
discontinuous jet and the neutral curve for the Bickley jet is remarkable.
Tﬁis agreement is best, as expected, for small wavenumbers and becomes quite
poor for o > 1 .

It seems reasonable, as suggested by Drazin, that the stability
of discontinuous profiles in a stratified fluid may similarly be studied to
investigate che stability of continuous unbounded stratified flow to distur~

bances of small wavenumbers.



2. The governing equations

The equations which govern the stability of thermally stratified
shear flow in an incompressible, viscous, heat-conducting fluid are the
Navier-Stokes equations, the continuity equation, a heat conduction equa-
tion, and the equation of state. With stable thermal stratification we
anticipate two-dimensional waves asAthe,most unstable disturbance and we,
therefore, consider only the two-dimensional problem.

In a Cartesian coordinate system with x chosen as the direction
of the unidirectional basic flow U(z) and =z as the vertical coordinate,

the linearized equations are:

' 1 1 2' 2'
e G- p e (S5 -1
ox 9z
1 ' ' 2, 2
e AWkt o B
ox oz P
du' ow' _
9% * 9z 0
2 2
36" 38" %) (a N ae')
+ U +— + w' =K + ’
ot ox d sz Bzz
and
p'=-DY9' L]

where u' and w' are the longitudinal and vertical components of the per-

turbation velocity, p' is the perturbation pressure, p' is the perturba-

tion density, and 8' is the perturbation temperature. The kinematic vis-

cosity is Vv , the thermometric conductivity is K , and thermal expansion



coefficient is 7Yy . It has been assumed that heating due to viscous dis-

sipation is negligible and the Boussinesq approximation has been made.
Consistent with the assumption that the most unstable distur-

bances are in the form of two-dimensional waves, periodic in x and t,

we let

a(z)

N

|

l A~

L w(z)
. P ( p(z)
LGJ /6\(z)(

If we now make the appropriate substitutions in equations (2.1-2.5) and

exp {ia(x-ct)} . (2.6)

use equation (2.5) in (2.2), we obtain

~
~ ~ ~

i0(U - c)u + Wbl = -1%2 +v® - ad)u , 2.7)
10(U = ¢)w - - l;£ +v? = oye + gye | (2.8)
iu& + D; =0, (2.9)
and 10U - ¢)6 + Wb = k(@2 - o2)0 , (2.10)

where D represents %;-.

The continuity equation (2.9) provides the basis for the introduction of

the perturbation stream function,

P' = ¢(z) exp {i(ax - ct)} ,

so that



u' = - Dlp' and W' = BX )
or u =~ D¢ and w = iadp .

Upon substitution of the perturbation stream function in equations (2.7)
and (2.8), and elimination of the pressure, we obtain the fourth-~order
equation,

2

| .
- © -’ - OMY =% - P b+ gyo (2.11)

If the last term on the right of this equation happens to be zero, it
reduces to the dimensional form of the Orr-Sommerfeld equation. Equation

(2.10) may now be expressed as
W - 0)6 + 400 = = @ - oo . (2.12)

Taken together equations (2.11) and (2.12) are the sixth-order governing
equations for the stability of thermally stratified parallel shear flow
consistent with the Boussinesq approximation and the assumption of
negligible viscous heating. The coupling between these equations is pro-
vided by.the gravitational body force and the vertical gradient of the
basic temperature.

If we now introduce a characteristic velocity U, , a charac-
teristic length L, , and a characteristic temperature difference T, ,

*

we obtain equations (2.11) and (2.12) in the non~dimensional form:

2
{Gar)™t @ - a®) - (U - ) @ - o&?) + D*Uld

D >

L4¢ Ri (2.13)

and ng {(iocRPr)"l (D2 - uz) - (U - c)}a

- (DO)d , (2.14)



where R =

are the Reynolds number, overall Richardson number, and Prandtl number

respectively. By eliminating © from equations (2.13) and (2.14), we

obtain the sixth-~order equation
L2L4¢ + Rlb(D®)¢ =0 . (2.15)

Gage and Reid (1968)8 and Gage (1971)9 have studied the stability
of thermally stratified viscous parallel flow in the presence of at least
one rigid boundary by extending the usual asymptotic analysis for the
Orr-Sommerfeld equation to treat the sixth-order equation. This method
leads to good results for large oR but suffers from the limitation that
only the special case of Pr = 1 can be treated. For unbounded flows we
anticipate instability for small oR and we must therefore apply other
methods to the stability analysis. As pointed out in the introduction,
one such method has been used by Drazin4 to study the stability of unbounded
homogeneous jets and shear layers to small wavemunber disturbances by con-
sidering the stability of flows with piecewise constant basic velocity.

In order to generalize Drazin's method to stratified flows we
first consider equation (2.15). Within a layer of constant basic velocity

it can be reexpressed as

¢Vi _ (u2 + B2 + Y2)¢iv + (GZBZ + O‘?_YZ + B2Y2)¢"

- (a28%y? - o®R%pr Ri, (00))¢ = 0 (2.16)

where 82 = az + 10R(U ~ c¢) and YZ = uz + ioR Pr(U - ¢) .
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Provided the basic temperature varies linearly with height, equation (2.16)
is a sixth-order ordinary differential equation with constant coefficients.
The solution is then a linear combination of exponential solutions of the

form

+ K, e + K. e + K, e . (2.17)
The a, are roots of
a6 - (a2 + 62 + yz)a4 + (azsz + azyz + BzYz)a2
- (8% - o’®Pr R1, (DO)) = O . (2.18)
1f Rib(D@) =0 and Pr # l', equation (2.16) can be expressed as

{2 - o*} p* - 8%} (0% - v*¥p =0 , (2.19)

and the solution is of the form

¢(z) = Kle—uz + Kze_Bz + K3e_YZ
+ Kaeaz + KSeBZ + K6eYz (2.20)
If it should happen that Rib(DG) =0 and Pr = 1 , the solution
should be written in the form
o(z) = Kle—az + Kze_Bz + |<32e_Bz
+ Kéeaz + KSeBZ + |<6zeBZ . (2.21)
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Finally, in the limit Pr > « with Rib(De) = 0 , equation (2.16) reduces
to
i
$7 - o2+ 8o + oY =0, (2.22)
which is the Orr-Sommerfeld equation with constant basic velocity consider-

ed by Drazin.
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3. The Matching Conditions

The elements which go into the characteristic value problem for
investigating the stability of thermally stratified flow are the solutions
of the governing differential equations together with the simultaneous
satisfaction of all boundary conditions., In developing éhe characteristic
value problem for models with piecewise constant velocity profiles it is
necessary to consider the préper matching conditions to be imposed on solu-
tions in adjacent layers across a discontinuity in the basic flow, These
matching conditions may be -obtained by requiring continuity of certain
physical quantities (viz, the perturbation velocity, stress and temperature)
or by successively integrating the equation (2,15).

Drazin4 develops the matching conditions for the Orr-Sommerfeld
equation with a piecewise constant velocity profile by repeatedly integrating
the Orr-Sommerfeld equation across the discontinuity, We may proceed in a

similar fashion by repeatedly integrating equation (2,15) to show that

[¢] =0, (3.1)
[Dp] =0 , (3.2)
D% + iGR(U - )] = 0 , (3.3)
(0% - 1aR(U - ¢)D$] = O , (3.4)
(0% -30°D%¢ - 1aR(U - )D%] = 0 , (3.5)
and
[D5<[> - 30L2D3¢ - 10R(U - ¢) {D3¢ - 20L2D¢}] =0, (3.6)

where the square brackets denote the jump, or difference of the quanity across
the discontinuity. The first four matching conditions above were given by

Drazin for the Orr-Sommerfeld problem.
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Successive integration of the sixth-order equation is rather
cumbersome. We may, however, illustrate the derivation of the matching
conditions in the following manner. First consider equation (2.15) in

the form

LL,¢ = {Gorer) ™ @ - o) - (U-'e)}L,9 = - Ri, 0"

and anticipate the continuity of ¢ , and D¢ . Integrating across the

discontinuity at z = z  , say, we find

) zo+€
[DL4¢]E Lin [DLA(b]
g0 z -
(o]
z +€
-1 2 °
= 1im {(ioRPr) ~ o + (U - )} J L4¢ dz
£¥0 z -€
o
z +£
0
- lim Ri f (DO) ¢ dz . (3.8)
€0
z —€
o

Provided. L4¢ is bounded at z the first term on the right of equation
(3.8) vanishes. The remaining term vanishes when 0O is continuous. If

O 1is discontinuous at z, > we integrate by parts to get

z ‘e z +e
o
lin - Ri, f 0'¢ dz = - Ri 4[6¢] + lim f o6 dz (3.9)
£>0 €>0
z € z -€
) o

and the matching condition will then be given by

[ DL ¢ + Ri, e¢] =0 .
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If we integrate again across the discontinuity, we find

z tE
)
[L ¢] = lim - Ri f 0p dz =0 .
4 €50 b
z ~€
)

Since the equation L4¢ =0 1is the Orr-Sommerfeld equation, it follows
that subsequent integrations must yield the same matching conditions as
found by Drazin.

It is of some interest to consider what physical quantities are
required to be continuous across the discontinuity in basic velocity con-
sistent with the matching conditions derived above. The continuity of ¢
and D¢ are consistent with the continuity of-the normal and tangential
perturbation velocities-respgctively. Equation (3.3) is associated with

the continuity of vertical derivative of the normal perturbation stress,

Bl 2
O, o +R,az (3,12)
as it appears in
4 1]
. 4 p'eL . 193 foaw' | ou' _’é__(_g_ _2_3W)
10’:(U— C)W' —-_-SL-F—R-__); —a—}z— +—a—z— +aZ p +Raz ’ (3'13)
pU
o}
which leads to the requirement
2 4 2 4 4 '
Dw' + o w' + i0R(U - c)w
1
=[__5__P =R 4+ Roo ']=o. (3.14)
2 zZZz
Py,

Equation (3.14)reduc§s to (3.3) upon introduction of the stream function

and application of (3.1). In a similar way the continuity of the normal
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perturbation stress

| 1
vo_p 423w
Ox 5 + R 5% (3.15)
as it appears in
. d p' , 2 du' 19 (3 aw')
-— ' EE eve— — — — ——— ——— ———
ia(U c)u ox ( 0 + R Bx’) + R 9z (Bz + ox (3.16)
which leads to the requirement
2 r o _ g - 1 2 t = 3_ ' =
[D u' - 10R(U - c)u' + o’u ] - [ax o ] 0. (3.17)

Finally from equation (2.13) we observe that the continuity of ©6' implies

[L4¢] =0

which reduces to (3.5) and the continuity of D8' implies

[DL4¢] = 0

which reduces to (3.6).

" The usual physical quantities that one expects to be continuous
in a viscous heat-conducting fluid are the perturbation velocity, the per-
turbation stress and the perturbation temperature. It seems reasonable to
include the vertical derivative of the perturbation temperature for the
present problem. The only discrepancy between the two approaches to the
matching conditions appears in the third condition of equation (3.3). Esch6,
replaces (3.3) by the condition that perturbation shear stress is continuous,

which implies

[D2¢ + a2¢] 0. (3.18)
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Drazin argues that in view of the aphysical nature of the present model the
condition of equation (3,3) is more appropriate than (3.18), We have chosen

to follow Drazin in this matter,
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4. The Characteristic Value Problem

In Section 2 we derived the governing differential equation for
the stability of two-dimensional disturbances in a layer of stratified
fluid with constant basic velocity. By making use of the matching con-
ditions to be imposed on solutions of this equation in adjacent layers
we may now formulate the characteristic value problem.

In general the characteristic value problem is posed by re-
quiring the solution (2.17) of eq. (2.16) to satisfy the matching con-
ditions (3.1 -3.6) at each interface together with boundedness conditions
for eigensolutions in regions which extend to infinity. We illustrate the
technique below by posing the characteristic value problem for the simple

shear layer with

U(z) = 1 z>0
-1 z <o and 0(z) zZ (4.

and the simple jet with

vy = J 1ol <l e
0 |zl > 1

it

(4.

]
N

4.1. The simple shear layer

The simple shear layer is a two layer-model. 1In region 1, z > 0 ,

say, the solutions which remain bounded as =z + ® can be expressed as

Z ~8., %

-a 12

llz —-a

1)

2)

_ 13
¢l(z) = Kj,@ + Kip€ + K. .e (4.3)

13

whereas in region 2 z < 0 , the solutions which remain bounded as z > - «

are

+a,.z +a, .2 +a
o 21 22 4
¢2(z) = KZle + K22e + K23e . (4.

4)
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Application of the matching conditions at z = 0 leads to the algebraic

equations
sz(élj + 523' + 63j). = Ky (6'lj + 62j + 63j) R (4.5)
“23%23 T 7 "1y (4.6
{af, + 10R(L = ¢) (5, + 8, + 839, 4
- {agj - R+ @) (815 + 8,5 + 8,00k, (4.7)
{agj - faR(~ 1 - c)azj} sz = {- aij + ioR(1 - c)alj} Klj . (4.8)
{agj—deagj + iaR(l+c)a§j}K2j = {aij—3u2aij-iuR(l—c)aij}Klj s (4.9)
and
{agj— 3u2agj + ioR(1l + ¢) (agj - 2a2a2j)} sz
= {- aij+ 30L2aij- ioR(L - <) (- aij + Zoczalj)} ST (4.10)
where 6.; is the Kronecker delta and summation from 1 to 3 is understood over

repeated indices, Further rearrangement and simplification leads to the

set of equations

§..+8,., +6,.) -«

Klj( 15 23 33 L(8,, +6,. +68,..) =0, (4.11)

K,., +a,. k,, =0, (4.12)
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{a]Z_j +10R(L =€) (8, + 8y + 830} Ky,
- {agj - 1R +¢) (8, + 8,y + 8308 Ky =0, (4.13)
{ag. - 10R(1 - c)a,. K., +'{&3. - joaR(~- 1 - e)a_ . }x,. =0, (4.14)
1j 13° 715 2j 237 23
{aij - 3a2aij - iaR( - c)aij} Klj
- '[agj - 3a2a§j + ioR(1 + c)agj} Kaj = 0, (4.15)
and
{ aij - BGZaij - ioR(1 - ¢) (aij - 2a2alj)} Klj
+ '{agj - 3a2agj + ioR(1 + ¢) (agj - Zazazj)} sz =0 ., (4.16)

Equations (4.11-4.16) form a system of six linear algebraic equations

in terms of the six arbitrary constants K and

“11 ° 12 > ®13 0 K21 0 K2
K23 . The determinant of the coefficients of these constants must van-
ish for the existence of non-trivial eigensolutions. It follows that we

may determine the eigenvalues of o , ¢ , R, Pr and Ri, by requiring

b
that

ACd y ¢ , R, Pr, Rib) =0 (4.17)

where A represents the determinant of the coefficients of the Kij

in equations (4.11-4.16).
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4.2, The discontinuous jet

The characteristic value problem for the discontinuous jet
with basic velocity and temperature profile given by (4.2) is developed
in a similar fashion as the simple shear layer treated above. The dis-
continuous jet is a three-layer model and matching conditions would ap-
pear to be required at the two interfages z =%1.

We consider first the solutions to the governing differential

equation in the three layers: region 1 (z > 1) , region 2 (-1 <z < 1) ,

and region 3 (z < - 1) . 1In region 1 , the solution is of the form
- a .z - a, .z - a,.,z
_ 11 12 13
¢, (z) = Kk e + K ,e + K g€ , (4.18)
in region 2, it is of the form
- a,,2 -a,  Z - a, .z
_ 21 22 _ 23
¢2(z) = K,yqe + K,pe + K,4e
+ a,.z a,n2Z a,,z
21 22 23
+ Ky 8 + Kyse + K26e s (4.19)
and, finally,in region 3, it of the form
+ a,..z + a,.z + a_.z
_ 31 32 33
¢3(z) = Kgqe + K€ + K5 . (4.20)

1f we proceeded to apply the matching conditions at 2z = * 1
we would obtain a set of twelve homogeneous linear algebraic equations
in the twelve unknown Kij . This procedure is unnecessary for the dis-
continuous jet with velocity, temperature gradient, and matching conditions
symmetric about z =0 . It is then possible to consider even and odd eigen-
solutions separately and thereby reduce the order of the characteristic

determinant.
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It is known from previous investigations on the stability of
parallel flow that the most unstable disturbances are associated with
even ¢ . If we anticipate a similar result here, we may use the symmetry

conditions to set

11~ K31 7 K12 T K33 0 Ky3 T K33

K

21 = Ko4 » Kgp = Kgg » and Kyy = Koo (4.21)

and we need only consider the region z 2 0 .

In region l,‘the solution can be expressed in the simpler form

- a,,(z~1) - a.,(z-1) - a,,(z-1)
- ll ] 12 1 13
¢l(z) Kll e + K12 e + K13 e
- a -~ a -~ a
Voo 11 . 12 . 13
where Kll Klle s K12 Klze and K13 = Kl3e . (4.22)

In region 2, the solution can be written

cosh a,.z cosh a, .z cosh a,.z
21 22 23
¢,(z) =k, ——— +x, ) ——— + k) ——— ,  (4.23)
2 21 cosh a1 22 cosh a22 23 cosh a23
. LA LI v =
where Ko1 K21 cosh a5 > K22 K22 cosh a9 and K23 K23 cosh agq

If we apply the matching conditions at z = 1 to these solutions,

we obtain

] —_ 1 =
Klj (dlj + 62j + 63j) K2j(61j + 62j + 63j) 0 (4.24)
1 =
oF Klj. + {azj tanh azj} sz 0 (4.25)
a? k.t - 1a2 + ioR(S,, + 8., + 8. ) k..t =0 (4.26)
13713 23 1j 23 33 2j >
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3 T 3 - 1 ¥ -
alelj + {aZj tanh a2j 10cRazj tanh aZj} sz =0, (4.27
4 22 . 2 ,
{alj 30 alj + 1uRcalj} Klj
o {8t - 30%a?, - ior(1 - a2} k..' = 0 (4.28)
23 23 23 23 ’ ) ‘
and
5 .23 .3 2 \
{alj 30 a5 + 10cRc(alj 2 alj)} Klj
5 _ 23 o _ 3 _ 2 v o
+ {azj 30 a); ioR(1 - ¢) (aZj 20, aZj)} tanh aZjKZj 0. (4.29)

The characteristic equation for the stratified jet is obtained by re-

i

7

quiring the determinant, A' , of K., to vanish in equations (4.24-4.29)

1]

and is of the form:

A'(@, ¢, R, Pr,Ri) =0.
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5. Results of the computations

The elements of the characteristic value problem have been
discussed in the preceding sections. 1In this section the procedure for
the numerical solution of the characteristic value problem will be out-

lined and some typical results will be presented.

5.1. Numerical procedure

In order to evaluate the characteristic determinant we have
used the Math Pack subroutine CGJR;a library subroutine supplied with the
Univac 1108. The technique employed to find the eigenvalues is an appli-
cation of Newton's method in two dimensions. To compute a curve of
neutral stability we usually set the Richardson number and the Prandtl
number equal to prescribed values. We may then pick a Reynolds number
and search for the eigenvalues of o and ¢ . The initial search is
made by trial and error. When it is felt that the values of o and ¢
are close enough to the desired eigenvalues, that is,when the value of the
(complex) determinant is small enough, we use Newton's method to converge
on the eigenvalues. The Reynolds number may be incremented and the old
eigenvalues used to to initiate the eigenvalue search. In this way many
poiiits ;long the curve of neutral stability may be computed in a single run.
Of_course, we may just as conveniently increment o (or c) and search
for eigenvalues of ¢ (or o) and R. The Richardson number or the Prandtl
number may also be incremented if desired (we then keep R , o , or c¢ fixed
and converge on the new eigenvalues of the other two). Finally, these com—
putations are not restricted to curves of neutral stability. The imaginary
part of ¢ can be set equal to some non~zero value (ci > 0 for instability

and s < 0 for stability) and, in this way, growth rates may be computed.
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5.2 Results for the discontinuous shear layer

Figures 3a, 3b, and 3c contain the results of the computations
for the curves of neutral stability of the stratified discontinuous shear
layer. Each figure contains curves of neutral stability in the o - R
plane for three Richa;dson numbers but for the same Prandtl number. The
Prandtl number differs for each figure.

Comparison of these three figures demonstrates the significance
of the Prandtl number variation for this simple model. Figure 3a shows
that the flow is considerably less stable for a Prandtl number of .1
than it is for a Prandtl number of 1 (figure 3b) or 10 (figure 3c).

In all three figures the curves of neutral stability appear to be approx-
imated by the intersection of two straight lines. The upper branch tends

to a constant ratio R/o , depending on Pr , whereas the lower branch
tends to a constant value of o , independent of the Prandtl number. Quali-
tatively each set of curves show similar behavior with the stabilizing
effect of increasing the Richardson number most pronounced at small wave-
numbers. Figure 4 demonstrates the effect of varying the Prandtl number
for a point lying on the upper branch of the curve of neutral stability.

As the P?andtl number gets large, the eigenvalues approach those of Drazin
for Rib = 0 . Figure 5 demonstrates s similar variation for a point lying
on the lower branch of the curve of neutral stability. 1In each case the
lower Prandtl number is associated with a destabilization of the shear flow.

5.3. Results for the discontinuous jet

Curves of neutral stability in the o , R plane for several values
of the Richardson number and Prandtl number equal to unity are shown in

Figure 6. TFor purposes of comparison the neutral curve obtained from
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equation (52) of Drazin4 (1961) has been reproduced. Once again these curves
show the stabilizing effect of thermal stratification to be most pronounced
at small wavenumbers, The minimum critical Reynolds number increases from a
value close to 4 and a wavenumber of .23 for Ri = 0 to a value of 15.6 and
a corresponding wavenumber of .98 for Ri = 0,0825 .

The corresponding curves of neutral stability in the o , ¢ plane
are shown in figure 7. At least for Ri 2 0.005 the small wavenumber
branches appear to approach limits as R > ® : o - a  » ¢ - e, = 0.5 so
that Ri = aici . The large wavenumber branch shows o > ® , ¢ = 0.5 as
R > ® independent of the Richardson number. It is clear from these results
that there is no critical Richardson number for which the flow is stabilized.
However, none is expected because of the discontinuity in the velocity profile.
The -Prandtl number variation has yet to be studied in full. It is clear, how-
ever, that there is no appreéiable Prandtl number vagiation for the homo-

geneous flow with Rib =0 .
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6. Concluding Remarks

In this paper we have pursued a linear'stability analysis of dis-~
continuous jet and shear layer profiles in stratified, viscous, heat-conducting,
and incompressible fluid. We have made the usual Boussinesq approximation in
deriving the sixth-order governing differential equation., The Prandtl number
dependence of this equation has been retained and we have demonstrated a
destabilizing effect at small Prandtl numbers for the simple shear layer. This
effect is also present without thermal stratification which suggests that the
sixth—order equation (2.15) should, at least for some flows, be used instead
of the Orr-Sommerfeld equatior for studying the stability of homogeneous
parallel shear flow.

The results of the stability amnalysis for the stratified shear layer
and jet demonstrate the stabilizing effect of thermal stratification, This
stabilizing effect, clearly illustrated in Figure 3 and Figure 6, is most
pronounced for small wavenumber disturbances. Gage and Reid8 and Gage9 found
a qualitatively similar stabilizing effect of thermal stratification on
bounded flows by using an asymptotic analysis of the governing differential
eqﬁation.

The inference of the stabilizing effect of thermal stratification
on continuous flows from the stability analysis of discontinuous flows pre-
sented here is reasonable for small wavenumber disturbances in view of Drazin's
work for homogeneous flows. We expect, that the lower branch of the curves
of neutral stability as presented here for the discontinuous jet and shear layer
approximate the corresponding curves for continuous flows over a limited range

of Richardson numbers bounded below by zero. The behavior of the upper branch
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at large wavenumbers with R =+ ® as o > « is not surprising for a dis-
continuous flow. A continuous flow may be expected to approach a limiting
value o =+ o, as R > in view of the known results for the homogeneous
shear layer U(z) = tanh z , A recent numerical study by Maslowe and Thompson
of the stratified shear layer, U(z) = 1 + tanh z , and p(z) = exp (- B tanh z),
confirms these expectations and demonstrates complete stabilization of the shear
flow when the overall Richardson number exceeds 1/4 . We can make no predic-
tions concerning critical Richardson numbers for continuous flows on the basis
of our stability analysis of the discontinuous flows, The fact that we find no
critical Richardson number for complete stabilization of the discontinuous
flows is not surprising. After all the overall Richardson number may be greater
than 1/4 while the local Richardson number is less than 1/4 .

The results presented here provide a qualitative framework in which
to develop the morw detailed numerical computations for continuous profiles. As
mentioned above, such computations have already been made for a stratified
shear layer by Maslowe and Thompson,

These results may have a wider application. In the atmosphere layers
with nearly adiabatic lapse rates are often bounded above by very stable layers.
the transition betﬁeen these layers may be quite sharp and beyond the resolving
capabilities of operational sounding devices., Often considerable shear develops
between these lavers. Several authors (for a review, see Brethertonll) have
conjectured recently on the role of "Kelvin-Helmholtz" instability in generating
internal waves at the interface., In this connection I believe that by "Kelvin-
Helmholtz" instability we really mean '"local shear instability of a stably
stratified shear flow'" which is a much more general state of affairs than the

classical Kelvin-Helmholtz model implies. In this connection we intend to
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generalize the present model to treat the stability of waves at an inter=-
face between lavers of differing temperature gradient, different horizontal

velocities and perhaps even differing viscosities.
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Captions for the Figures

Figure 1. The curve of neutral stability in the o , R plane for the
discontinuous jét after Drazin., The open circles and crosses
show the points on the curve of neutral stability for the Bickley
jet after Clenshaw and Elliott and TPatsumi and Gotoh respec~
tively.

Figure 2, The curve of neutral stability for the discontinuous jet in the
& , ¢ plane after Drazin, Open circles and crosses refer to
points on the corresponding curve for the Bickley jet after
Clenshaw and Elliott and Tatsumi and Gotoh respectively,

Figure 3. The curves of neutral stability in the o , Re plane for the
thermally stratified discontinuous shear layer at several different
Prandtl numbers (a) Pr =.l, (b) Pr =1, () Pr =10 ,

Figure 4. The Prandtl number variation of the wavenumber o for R = 2,0
and Ri = 0,001 ,

Figure 5. The Prandtl number variation of the wavenumber o for R = 10.0
and Ri = 0.20 ,

Figure 6, The curves of neutral stability for the thermally stratified dis-
continuous jet in the o , R plane for several values of Ri
and at Pr =1,

Figure 7, The curves of neutral stability for the thermally stratified
discontinuous jet in the ¢ , o plane for several values of Ri

and at Pr = 1 .
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